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Motivation 

Distributed algorithms have always been important 

• File Systems, Resource Allocation, Internet, … 

 

 

Increasingly becoming safety-critical 

• Robotic, transportation, energy, medical 

 

 

Prove correctness of distributed algorithm 
implementations 

• Pseudo-code is verified manually (semantic gap) 

• Implementations are heavily tested (low coverage) 

Model-Driven Verifying Compilation of Synchronous Distributed Applications, 

Sagar Chaki, James Edmondson, Proc. of MODELS 2014, to appear 
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Approach : Verification + Code Generation 

Distributed 

Application 

Safety 

Specification 

Program in Domain Specific Language 

Verification 

Code 

Generation 

Binary 

Debug Application, 

Refine Specification 
Success 

Failure 

Run on Physical 

Device 

Run within 

simulator 

The Verifying Compiler: 

A Grand Challenge for 

computing research 

Tony Hoare 
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Verification 

Distributed 

Application 

Safety 

Specification 

Sequentialization (assuming 

synchronous communication) 

Single-Threaded C Program 

Software Model Checking 

(CBMC, BLAST etc.) 

Failure Success 

Program in Domain Specific Language 

Automatic verification technique  for finite 
state concurrent systems. 

• Developed independently by Clarke and 
Emerson and by Queille and Sifakis in 
early 1980’s. 

• ACM Turing Award 2007 

 

Specifications are written in propositional 
temporal logic. (Pnueli 77) 

• Computation Tree Logic (CTL), Linear 
Temporal Logic (LTL), … 

 

Verification procedure is an intelligent 
exhaustive search of the state space of 
the design 

Model Checking 
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Code Generation 

Distributed 

Application 

Safety 

Specification 

Add synchronizer protocol 

C++/MADARA Program 

Compile 

(g++,clang,MSVC, etc.) 

Program in Domain Specific Language 
A database of facts: 𝐷𝐵 = 𝑉𝑎𝑟 ↦
𝑉𝑎𝑙𝑢𝑒 

Node 𝑖 has a local copy: 𝐷𝐵𝑖 

• update 𝐷𝐵𝑖 arbitrarily 

• publish new variable mappings 

• Immediate or delayed 

• Multiple variable mappings 

transmitted atomically 

Implicit “receive” thread on each node 

• Receives and processes variable 

updates from other nodes 

• Updates ordered via Lamport 

clocks 

Portable to different OSes (Windows, 

Linux, Android etc.) and networking 

technology (TCP/IP, UDP, DDS etc.) 
Binary 

MADARA Middleware 
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Case Study: Synchronous 

Collision Avoidance 
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Example: Synchronous Collision Avoidance 
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Example: Synchronous Collision Avoidance 
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Example: Synchronous Collision Avoidance 

(0,0) 

(3,3) 

(3,0) 

(0,3) 

Potential 

Collision 

Reservation 

Contention 

Resolved based 

on Node ID. No 

collision 

possible if no 

over-booking.  

X 

Y
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Collision Avoidance Protocol 

NEXT 

REQUEST 
If time to move to 

next coordinate 

WAITING 

If no other node is 

locking the next 

coordinate 

MOVE 

If no other node 

“with higher id” is 

trying to lock the 

next coordinate 

Reached the next 

coordinate 

Moving to the 

next coordinate 
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Synchronous Collision Avoidance Code 

MOC_SYNC; 

 

CONST X = 4; CONST Y = 4; 

CONST NEXT = 0;  

CONST REQUEST = 1; 

CONST WAITING = 2;  

CONST MOVE = 3; 

 

EXTERN int  

MOVE_TO (unsigned char x, 

                   unsigned char y); 

 

NODE uav (id) { … } 

 

void INIT () { … } 

 

void SAFETY { … } 

NODE uav (id) 

{ 

  GLOBAL bool lock [X][Y][#N]; 

  LOCAL int state,x,y,xp,yp,xf,yf; 

  void NEXT_XY () { … } 

  void ROUND () { 

    if(state == NEXT) { …  

      state = REQUEST; 

    } else if(state == REQUEST) { … 

      state = WAITING; 

    } else if(state == WAITING) { … 

      state = MOVE; 

    } else if(state == MOVE) { … 

      state = NEXT; 

    } } } 

INIT  

{ 

  FORALL_NODE(id) 

    state.id = NEXT; 

    //assign x.id and y.id non-deterministically 

    //assume they are within the correct range 

    //assign lock[x.id][y.id][id] appropriately 

   

  //nodes don’t collide initially 

  FORALL_DISTINCT_NODE_PAIR (id1,id2) 

    ASSUME(x.id1 != x.id2 || y.id1 != y.id2); 

} 

 

SAFETY { 

  FORALL_DISTINCT_NODE_PAIR (id1,id2) 

    ASSERT(x.id1 != x.id2 || y.id1 != y.id2); 

} 
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Synchronous Collision Avoidance Code 

    if(state == NEXT) { 

      //compute next point on route 

      if(x == xf && y == yf) return; 

      NEXT_XY(); 

      state = REQUEST; 

    } else if(state == REQUEST) { 

      //request the lock but only if it is free 

      if(EXISTS_OTHER(idp,lock[xp][yp][idp] != 0)) return; 

      lock[xp][yp][id] = 1; 

      state = WAITING; 

    } else if(state == WAITING) { 

      //grab the lock if we are the highest  

      //id node to request or hold the lock 

      if(EXISTS_HIGHER(idp, lock[xp][yp][idp] != 0)) return; 

      state = MOVE; 

    } 

    else if(state == MOVE) { 

      //now we have the lock on (xp,yp) 

      if(MOVE_TO()) return; 

      lock[x ][y][id] = 0;  

      x = xp; y = yp; 

      state = NEXT; 

    } 
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Tool Usage 

Project webpage (http://mcda.googlecode.com) 

• Tutorial (https://code.google.com/p/mcda/wiki/Tutorial) 

 

Verification 

• daslc --nodes 3 --seq --rounds 3 --seq-dbl --out tutorial-02.c tutorial-
02.dasl 

• cbmc tutorial-02.c (takes about 10s to verify) 

 

Code generation & simulation 

• daslc --nodes 3 --madara --vrep --out tutorial-02.cpp tutorial-02.dasl 

• g++ … 

• mcda-vrep.sh 3 outdir ./tutorial-02 … 
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Demonstration: Synchronous 

Collision Avoidance 
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